Tetrahedron Letters 50 (2009) 5917-5919

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Primary amine diazenium diolate ions of structure $\{RNN(O)NOR'\}^-$ as ambident nucleophiles

D. Scott Bohle^{a,*}, Larry K. Keefer^b, Joseph E. Saavedra^c

^a Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada H3A 2K6
^b National Cancer Institute at Frederick, Frederick, MD 21702, USA
^c Basic Sciences Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA

ARTICLE INFO

Article history: Received 21 July 2009 Revised 31 July 2009 Accepted 9 August 2009 Available online 13 August 2009

Keywords: Nitric oxide Nitroxyl Diazeniumdiolate Bidentate anion

ABSTRACT

An O²-substituted primary amine diazeniumdiolate RHN–N(O)=NOR' is ionized to an anion that attacks an electrophile R"X via either of two nitrogens to form both RR"N–N(O)=NOR' and R–N=N(O)–N(R")OR'. The bidentate character of such anions should be kept in mind when planning or evaluating drug discovery efforts involving diazeniumdiolates of structure RHN–N(O)=NOR'.

© 2009 Elsevier Ltd. All rights reserved.

Diazeniumdiolated primary amines are of growing interest as caged forms of the recently discovered bioeffector molecule nitroxyl (HNO).¹ We are exploring the fundamental chemistry of these ions (**1**) and their O^2 -substituted derivatives (**2**) as a platform for rational development of prodrugs designed to deliver HNO to specific bodily compartments for therapeutic benefit.

An interesting feature of neutral molecules having structure **2** is their ability to ionize at mildly basic pH, forming anions of structure **3** that are capable of $Z \Leftrightarrow E$ fluxional behavior. In the case of **2** with R = R' = Me, the interconversion barrier has been calculated to drop from a prohibitive 160 kJ mol⁻¹ for **2** to a value about half that for the anionic form **3** (Scheme 1).² Experimental confirmation that isomerization of *Z*-**3** to *E*-**3** occurs under mildly basic conditions was provided for **3** with R = isopropyl and $R' = CH_2CH_2Br$ by trapping the *E* form in a novel six-membered heterocyclic arrangement. These results can be easily rationalized in terms of the extensive delocalization of the N=N linkage of **2** and consequent decrease in its double-bond character on ionization, as summarized in Scheme $1.^2$

Scheme 1. Mechanism of isomerizing Z-2 to E-2 (R=Me=R') via conjugate base 3.²

^{*} Corresponding author. Tel.: +1 514 398 7409; fax: +1 514 398 3797. *E-mail address:* david.bohle@mcgill.ca (D.S. Bohle).

^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.08.012

We sought to extend the earlier work² by trapping an anion of structure **3** as *an acyclic E* derivative. Surprisingly, the outcome of our experiment revealed a second novel implication of the electronic delocalization shown in Scheme 1: by distributing the π electrons more evenly between the first and third nitrogens in *Z*-**3**, electrophilic attack at either N can be observed. As summarized in Scheme 2, treatment of **4** with dimethyl sulfate in DMSO containing 1.5 equiv of 30% sodium hydroxide led to generation of two different alkylation products of ion **5**. The expected methylation product **6**³ was produced in only 2% yield, while isomer **7** accounted for the remaining 98%. Previously reported³ alkylations of anions having structure **3** provided adducts **2** in yields of at least 28%. It is not clear why derivatization of **3** at the NO nitrogen should so dramatically predominate in the present case.

Both **6** and **7** have been spectroscopically characterized, and their structures have been determined by single crystal X-ray diffraction (Figs. 1 and 2). The structural and spectroscopic contrasts between **6** and **7** are significant and indicate the extensive electronic reorganization in **7** as contrasted with diazeniumdiolates such as **4** and **6**.⁴ While **6** has strong UV bands at 226 and 258 nm, these are absent in **7**, which has a single band at 216 nm. The structural data of Figures 1 and 2 clearly indicate rehybridization of N(1) and N(3), giving longer N(2)–N(1) and shorter N(1)–N(3) bonds in isomer **7** relative to **6**.

Spectroscopically, there is no indication for the presence of the isomer corresponding to the E conformation resulting from rotation around the N(1)=N(3) bond by the isopropyl group in **7**. Theoretically, by ab initio DFT calculations [B3LYP/6-311++ G^{**} for MeON(Me)–N(O)=N(*i*Pr) (Supplementary data)], the crystallographically observed *Z*-isomer for **7** is circa 48 kJ mol⁻¹ more stable than its *E*-isomer.

Electrophilic addition at N(2) in neutral diazeniumdiolates such as **4** or at nitrogen in hyponitrite remains a very unusual reaction.⁵ Clearly, the lone pair at this nitrogen is not part of a strongly nucleophilic HOMO orbital and is likely to be too low in energy to act as either a ligand or a nucleophile.

An important implication in this work is that the reactivity of the anions derived from the primary amine diazeniumdiolates might provide synthetic access to a wide new class of potential

Scheme 2. Methylation of ambident anion 5.

Figure 1. Single crystal structure of **6**. Important metric parameters (Å) and (°): N(2)-N(1) 1.280(4), N(1)-N(3) 1.441(4), N(2)-O(2) 1.398(4), N(1)-O(1) 1.226(4), O(2)-N(2)-N(1) 107.8(3), N(2)-N(1)-O(1) 126.8(3), N(2)-N(1)-N(3) 110.3(3) and O(1)-N(1)-N(3) 122.9(3). Hydrogen atoms are omitted and only one position of the disordered isopropyl group is shown for clarity.

Figure 2. Single crystal structure of **7**. Important metric parameters (Å) and (°): N(2)–N(1) 1.469(3), N(1)–N(3) 1.260(3), N(2)–O(2) 1.420(2), N(1)–O(1) 1.244(3), N(2)–C(4) 1.464(3), O(2)–N(2)–N(1) 104.0(2), O(2)–N(2)–C(4) 106.5(2), C(4)–N(2)–N(1) 112.5(2), N(2)–N(1)–O(1) 114.5(2), N(2)–N(1)–N(3) 116.0(2), O(1)–N(1)–N(3) 129.2(2), and N(1)–N(3)–C(1) 112.2(2). Hydrogen atoms are omitted for clarity.

HNO and NO donors. Exploration of this chemistry remains an active theme in our laboratories.

Acknowledgments

This project has been funded by the National Cancer Institute, National Institutes of Health, under contract NO1CO-2008-00001, by the Intramural Program of the NIH, National Cancer Institute, Center for Cancer Research, by the National Science and Engineering Council in Canada, in the form of a Discovery grant to D.S.B., and by the CRC and CFI for infrastructure support.

Supplementary data

Supplementary data (single crystal X-ray analysis, synthetic details, and density functional calculations) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009. 08.012.

References and notes

- Miranda, K. M.; Katori, T.; Torres de Holding, C. L.; Thomas, L.; Ridnour, L. A.; McLendon, W. J.; Cologna, S. M.; Dutton, A. S.; Champion, H. C.; Mancardi, D.; Tocchetti, C. G.; Saavedra, J. E.; Keefer, L. K.; Houk, K. N.; Fukuto, J. M.; Kass, D. A.; Paolocci, N.; Wink, D. A. *J. Med. Chem.* **2005**, *48*, 8220–8228.
 Wang, Y.-N.; Bohle, D. S.; Bonifant, C. L.; Chmurny, G. N.; Collins, J. R.; Davies, K.
- Wang, Y.-N.; Bohle, D. S.; Bonifant, C. L.; Chmurny, G. N.; Collins, J. R.; Davies, K. M.; Deschamps, J. R.; Flippen-Anderson, J. L.; Keefer, L. K.; Klose, J. R.; Saavedra, J. E.; Waterhouse, D. J.; Ivanic, J. J. Am. Chem. Soc. 2005, 127, 5388–5395.
- Saavedra, J. E.; Bohle, D. S.; Smith, K. N.; George, C.; Deschamps, J. R.; Parrish, D.; Ivanic, J.; Wang, Y.-N.; Citro, M. L.; Keefer, L. K. J. Am. Chem. Soc. 2004, 126, 12880–12887.
- Keefer, L. K.; Flippen-Anderson, J. L.; George, C.; Shanklin, A. P.; Dunams, T. M.; Christodoulou, D.; Saavedra, J. E.; Sagan, E. S.; Bohle, D. S. Nitric Oxide: Biol. Chem. 2001, 5, 377–394.
- Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Sagan, E. S. J. Am. Chem. Soc. 2000, 122, 5539–5549.