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An O -substituted primary amine diazeniumdiolate RHN–N(O)@NOR0 is ionized to an anion that attacks
an electrophile R00X via either of two nitrogens to form both RR00N–N(O)@NOR0 and R–N@N(O)–N(R00)OR0.
The bidentate character of such anions should be kept in mind when planning or evaluating drug discov-
ery efforts involving diazeniumdiolates of structure RHN–N(O)@NOR0.

� 2009 Elsevier Ltd. All rights reserved.
Diazeniumdiolated primary amines are of growing interest as
caged forms of the recently discovered bioeffector molecule nitrox-
yl (HNO).1 We are exploring the fundamental chemistry of these
ions (1) and their O2-substituted derivatives (2) as a platform for
rational development of prodrugs designed to deliver HNO to spe-
cific bodily compartments for therapeutic benefit.

An interesting feature of neutral molecules having structure 2 is
their ability to ionize at mildly basic pH, forming anions of struc-
ture 3 that are capable of Z ¡ E fluxional behavior. In the case of
2 with R = R0 = Me, the interconversion barrier has been calculated
to drop from a prohibitive 160 kJ mol�1 for 2 to a value about half
that for the anionic form 3 (Scheme 1).2 Experimental confirmation
that isomerization of Z-3 to E-3 occurs under mildly basic condi-
tions was provided for 3 with R = isopropyl and R0 = CH2CH2Br by
trapping the E form in a novel six-membered heterocyclic arrange-
ment. These results can be easily rationalized in terms of the
ll rights reserved.

: +1 514 398 3797.
.

extensive delocalization of the N@N linkage of 2 and consequent
decrease in its double-bond character on ionization, as summa-
rized in Scheme 1.2
Scheme 1. Mechanism of isomerizing Z-2 to E-2 (R@Me@R0) via conjugate base 3.2



Figure 1. Single crystal structure of 6. Important metric parameters (Å) and (�):
N(2)–N(1) 1.280(4), N(1)–N(3) 1.441(4), N(2)–O(2) 1.398(4), N(1)–O(1) 1.226(4),
O(2)–N(2)–N(1) 107.8(3), N(2)–N(1)–O(1) 126.8(3), N(2)–N(1)–N(3) 110.3(3) and
O(1)–N(1)–N(3) 122.9(3). Hydrogen atoms are omitted and only one position of the
disordered isopropyl group is shown for clarity.
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We sought to extend the earlier work2 by trapping an anion of
structure 3 as an acyclic E derivative. Surprisingly, the outcome of
our experiment revealed a second novel implication of the elec-
tronic delocalization shown in Scheme 1: by distributing the p
electrons more evenly between the first and third nitrogens in Z-
3, electrophilic attack at either N can be observed. As summarized
in Scheme 2, treatment of 4 with dimethyl sulfate in DMSO con-
taining 1.5 equiv of 30% sodium hydroxide led to generation of
two different alkylation products of ion 5. The expected methyla-
tion product 63 was produced in only 2% yield, while isomer 7 ac-
counted for the remaining 98%. Previously reported3 alkylations of
anions having structure 3 provided adducts 2 in yields of at least
28%. It is not clear why derivatization of 3 at the NO nitrogen
should so dramatically predominate in the present case.

Both 6 and 7 have been spectroscopically characterized, and
their structures have been determined by single crystal X-ray dif-
fraction (Figs. 1 and 2). The structural and spectroscopic contrasts
between 6 and 7 are significant and indicate the extensive elec-
tronic reorganization in 7 as contrasted with diazeniumdiolates
such as 4 and 6.4 While 6 has strong UV bands at 226 and
258 nm, these are absent in 7, which has a single band at
216 nm. The structural data of Figures 1 and 2 clearly indicate
rehybridization of N(1) and N(3), giving longer N(2)–N(1) and
shorter N(1)–N(3) bonds in isomer 7 relative to 6.

Spectroscopically, there is no indication for the presence of the
isomer corresponding to the E conformation resulting from rota-
tion around the N(1)@N(3) bond by the isopropyl group in 7. The-
oretically, by ab initio DFT calculations [B3LYP/6-311++G** for
MeON(Me)–N(O)@N(iPr) (Supplementary data)], the crystallo-
graphically observed Z-isomer for 7 is circa 48 kJ mol�1 more sta-
ble than its E-isomer.

Electrophilic addition at N(2) in neutral diazeniumdiolates such
as 4 or at nitrogen in hyponitrite remains a very unusual reaction.5

Clearly, the lone pair at this nitrogen is not part of a strongly nucle-
ophilic HOMO orbital and is likely to be too low in energy to act as
either a ligand or a nucleophile.

An important implication in this work is that the reactivity of
the anions derived from the primary amine diazeniumdiolates
might provide synthetic access to a wide new class of potential
Scheme 2. Methylation of ambident anion 5.

Figure 2. Single crystal structure of 7. Important metric parameters (Å) and (�):
N(2)–N(1) 1.469(3), N(1)–N(3) 1.260(3), N(2)–O(2) 1.420(2), N(1)–O(1) 1.244(3),
N(2)–C(4) 1.464(3), O(2)–N(2)–N(1) 104.0(2), O(2)–N(2)–C(4) 106.5(2), C(4)–N(2)–
N(1) 112.5(2), N(2)–N(1)–O(1) 114.5(2), N(2)–N(1)–N(3) 116.0(2), O(1)–N(1)–N(3)
129.2(2), and N(1)–N(3)–C(1) 112.2(2). Hydrogen atoms are omitted for clarity.
HNO and NO donors. Exploration of this chemistry remains an
active theme in our laboratories.
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